Wolfram Computation Meets Knowledge

Constant Translational Acceleration in a Straight Line

Constant translational acceleration in a straight line describes the equation of motion of an object moving under constant acceleration along a straight line as a function of time.

The final position for constant acceleration in a stright line equals the initial position plus the initial velocity times the time plus half the acceleration times the time squared.

Formula

QuantityVariable[Subscript["x", "f"], "Length"] == (QuantityVariable["a", "Acceleration"]*QuantityVariable["t", "Time"]^2)/2 + QuantityVariable["t", "Time"]*QuantityVariable[Subscript["v", "i"], "Speed"] + QuantityVariable[Subscript["x", "i"], "Length"]

symbol description physical quantity
xf final position "Length"
a acceleration "Acceleration"
t time "Time"
vi initial speed "Speed"
xi initial position "Length"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Constant Translational Acceleration in a Straight \
Line"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Constant Translational Acceleration in a Straight Line"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Constant Translational Acceleration in a Straight Line"], \
{QuantityVariable["a","Acceleration"] -> 
   Quantity[1, ("Meters")/("Seconds")^2], QuantityVariable[
\!\(\*SubscriptBox[\("v"\), \("i"\)]\),"Speed"] -> 
   Quantity[0, ("Meters")/("Seconds")]}]
Out[3]=

Source Metadata

Publisher Information