Wolfram Computation Meets Knowledge

Parallel Resistor-Inductor Circuit

A resistor–inductor circuit is an electric circuit composed of resistors and inductors driven by a voltage or current source. The parallel version places resistor and inductor in parallel.

The resistor current equals the input voltage divided by the resistance. The inductor current equals the input voltage divided by the product of 2\[Pi] times the frequency and the magnetic inductance.

Formula

{QuantityVariable[Subscript["I", "r"], "ElectricCurrent"] == QuantityVariable[Subscript["V", "in"], "ElectricPotential"]/QuantityVariable["R", "ElectricResistance"], QuantityVariable[Subscript["I", "l"], "ElectricCurrent"] == QuantityVariable[Subscript["V", "in"], "ElectricPotential"]/(2*Pi*QuantityVariable["f", "Frequency"]*QuantityVariable["L", "MagneticInductance"])}

symbol description physical quantity
Ir resistor current "ElectricCurrent"
R electric resistance "ElectricResistance"
Vin input voltage "ElectricPotential"
Il inductor current "ElectricCurrent"
f frequency "Frequency"
L magnetic inductance "MagneticInductance"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Parallel Resistor-Inductor Circuit"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Parallel Resistor-Inductor Circuit"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Parallel Resistor-Inductor Circuit"], {QuantityVariable[
\!\(\*SubscriptBox[\("V"\), \("in"\)]\),"ElectricPotential"] -> 
   Quantity[10, "Volts"], 
  QuantityVariable["L","MagneticInductance"] -> 
   Quantity[1, "Henries"], QuantityVariable[
\!\(\*SubscriptBox[\("I"\), \("l"\)]\),"ElectricCurrent"] -> 
   Quantity[0.027`, "Amperes"], QuantityVariable[
\!\(\*SubscriptBox[\("I"\), \("r"\)]\),"ElectricCurrent"] -> 
   Quantity[1, "Amperes"]}]
Out[3]=

Publisher Information