Wolfram Computation Meets Knowledge

Single-Slit Diffraction Using Wavenumber and Intensity Ratio

Single­slit diffraction is when light passes through a narrow slit and creates an interference pattern on the other side.

The normalized transmitted intensity equals the square of the sinc of the product of half the slit width, the wavenumber and the sine of the diffraction angle.

Formula

QuantityVariable[Subscript[Style["I", Italic], "θ"]/Subscript[Style["I", Italic], "0"], "Unitless"] == Sinc[(QuantityVariable["d", "Distance"]*QuantityVariable["k", "Wavenumber"]*Sin[QuantityVariable["θ", "Angle"]])/2]^2

symbol description physical quantity
Iθ/I0 normalized transmitted intensity "Unitless"
d slit width "Distance"
k wavenumber "Wavenumber"
θ diffraction angle "Angle"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Single-Slit Diffraction Using Wavenumber and \
Intensity Ratio"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Single-Slit Diffraction Using Wavenumber and Intensity Ratio"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Single-Slit Diffraction Using Wavenumber and Intensity Ratio"], \
{QuantityVariable["d","Distance"] -> Quantity[0.1`, "Millimeters"], 
  QuantityVariable["k","Wavenumber"] -> 
   Quantity[1.25`*^7, 1/("Meters")]}]
Out[3]=

Publisher Information