Wolfram Computation Meets Knowledge

Fourier Number Using Thermal Diffusivity

The Fourier number is a dimensionless number that characterizes transient heat conduction. Conceptually, it is the ratio of diffusive or conductive transport rate to the quantity storage rate, where the quantity may be either heat (thermal energy) or matter (particles).

The Fourier number is the characteristic time interval times the thermal diffusivity divided by the characteristic length squared.

Formula

QuantityVariable["Fo", "FourierNumber"] == (QuantityVariable["t", "Time"]*QuantityVariable["α", "ThermalDiffusivity"])/QuantityVariable["l", "Length"]^2

symbol description physical quantity
Fo Fourier number for heat transfer "FourierNumber"
l characteristic length "Length"
t characteristic time interval "Time"
α thermal diffusivity "ThermalDiffusivity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Fourier Number Using Thermal Diffusivity"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject["Fourier Number Using Thermal Diffusivity"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Fourier Number Using Thermal Diffusivity"], {QuantityVariable[
   "\[Alpha]","ThermalDiffusivity"] -> 
   Quantity[1, ("Meters")^2/("Seconds")], 
  QuantityVariable["t","Time"] -> Quantity[1, "Seconds"]}]
Out[3]=

Publisher Information