Wolfram Computation Meets Knowledge

Reduced Mass

The reduced mass is the \"effective\" inertial mass appearing in the two-body problem of Newtonian mechanics.

The reduced mass equals the product of the masses of the objects divided by the sum of those masses.

Formula

QuantityVariable[Subscript["m", "12"], "Mass"] == (QuantityVariable[Subscript["m", "1"], "Mass"]*QuantityVariable[Subscript["m", "2"], "Mass"])/(QuantityVariable[Subscript["m", "1"], "Mass"] + QuantityVariable[Subscript["m", "2"], "Mass"])

symbol description physical quantity
m12 reduced mass "Mass"
m1 mass of first object "Mass"
m2 mass of second object "Mass"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Reduced Mass"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Reduced Mass"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[ResourceObject["Reduced Mass"], {QuantityVariable[
\!\(\*SubscriptBox[\("m"\), \("12"\)]\),"Mass"] -> 
   Quantity[0.9`, "Kilograms"], QuantityVariable[
\!\(\*SubscriptBox[\("m"\), \("2"\)]\),"Mass"] -> 
   Quantity[10, "Kilograms"]}]
Out[3]=

Publisher Information