Wolfram Computation Meets Knowledge

Blasius Boundary Layer Thickness

A Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate, which is held parallel to a constant unidirectional flow.

The Blasius boundary layer thickness increases as the square root of the distance along the plate and the dynamic viscosity. It decreases as the square root of the fluid density and the freestream velocity.

Formula

QuantityVariable["δ", "Thickness"] == 4.9*Sqrt[(QuantityVariable["x", "Length"]*QuantityVariable["η", "DynamicViscosity"])/(QuantityVariable["ρ", "MassDensity"]*QuantityVariable[Subscript["U", "∞"], "Speed"])]

symbol description physical quantity
δ Blasius boundary layer thickness "Thickness"
x distance along plate "Length"
η dynamic viscosity "DynamicViscosity"
ρ fluid density "MassDensity"
U freestream velocity "Speed"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Blasius Boundary Layer Thickness"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Blasius Boundary Layer Thickness"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject["Blasius Boundary Layer Thickness"], {QuantityVariable[
\!\(\*SubscriptBox[\("U"\), \("\[Infinity]"\)]\),"Speed"] -> 
   Quantity[10, ("Meters")/("Seconds")], 
  QuantityVariable["\[Delta]","Thickness"] -> 
   Quantity[3.54`, "Meters"], 
  QuantityVariable["x","Length"] -> Quantity[5, "Meters"]}]
Out[3]=

Source Metadata

Publisher Information