Wolfram Computation Meets Knowledge

Hohmann Exit Delta-V

The Hohmann transfer orbit is an elliptical orbit used to transfer between two circular orbits of different radii in the same plane. The exit delta-v is the change in velocity needed to exit the elliptical orbit.

The Hohmann exit delta-v increases with the square root of the mass of the orbit center. As the radius of the inner and outer orbit increases, the delta-v decreases.

Formula

QuantityVariable[Row[{"Δ", Subscript["v", "2"]}], "Speed"] == Sqrt[(Quantity[1, "GravitationalConstant"]*QuantityVariable["M", "Mass"])/QuantityVariable[Subscript["r", "2"], "Length"]]*(1 - Sqrt[2]*Sqrt[QuantityVariable[Subscript["r", "1"], "Length"]/(QuantityVariable[Subscript["r", "1"], "Length"] + QuantityVariable[Subscript["r", "2"], "Length"])])

symbol description physical quantity
Δv2 Hohmann Δv2 "Speed"
M mass of orbit center "Mass"
r2 orbital radius of outer body "Length"
r1 orbital radius of inner body "Length"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Hohmann Exit Delta-V"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Hohmann Exit Delta-V"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject["Hohmann Exit Delta-V"], {QuantityVariable[
\!\(\*SubscriptBox[\("r"\), \("2"\)]\),"Length"] -> 
   Quantity[1.52`, "AstronomicalUnit"], 
  QuantityVariable["M","Mass"] -> 
   Quantity[1.988435`*^30, "Kilograms"], QuantityVariable[
\!\(\*SubscriptBox[\("r"\), \("1"\)]\),"Length"] -> 
   Quantity[1, "AstronomicalUnit"]}]
Out[3]=

Source Metadata

Publisher Information