Wolfram Computation Meets Knowledge

Lenoir Cycle

The Lenoir cycle is an idealized thermodynamic cycle often used to model a pulsejet engine.

The thermal efficiency depends on the heat capacity ratio and the hot and cold reservoir temperatures.

Formula

QuantityVariable[Subscript["η", "th"], "ThermalEfficiency"] == 1 - (QuantityVariable["γ", "HeatCapacityRatio"]*QuantityVariable[Subscript["T", "c"], "Temperature"]*(-1 + (QuantityVariable[Subscript["T", "h"], "Temperature"]/QuantityVariable[Subscript["T", "c"], "Temperature"])^QuantityVariable["γ", "HeatCapacityRatio"]^(-1)))/(-QuantityVariable[Subscript["T", "c"], "Temperature"] + QuantityVariable[Subscript["T", "h"], "Temperature"])

symbol description physical quantity
ηth thermal efficiency "ThermalEfficiency"
γ heat capacity ratio "HeatCapacityRatio"
Tc cold reservoir temperature "Temperature"
Th hot reservoir temperature "Temperature"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Lenoir Cycle"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Lenoir Cycle"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[ResourceObject["Lenoir Cycle"], {QuantityVariable[
\!\(\*SubscriptBox[\("\[Eta]"\), \("th"\)]\),"ThermalEfficiency"] -> 
   Quantity[0.35`, ("Joules")/("Joules")], 
  QuantityVariable["\[Gamma]","HeatCapacityRatio"] -> 1.4`, 
  QuantityVariable[
\!\(\*SubscriptBox[\("T"\), \("c"\)]\),"Temperature"] -> 
   Quantity[300, "Kelvins"]}]
Out[3]=

Source Metadata

Publisher Information