Wolfram Computation Meets Knowledge

Reynolds Number Using Dynamic Viscosity

The Reynolds number is an important dimensionless quantity in fluid mechanics used to help predict flow patterns in different fluid flow situations.

The Reynolds number equals the product of the characteristic length, characteristic speed and mass density divided by the dynamic viscosity.

Formula

QuantityVariable["Re", "ReynoldsNumber"] == (QuantityVariable["l", "Length"]*QuantityVariable["v", "Speed"]*QuantityVariable["ρ", "MassDensity"])/QuantityVariable["η", "DynamicViscosity"]

symbol description physical quantity
Re Reynolds number "ReynoldsNumber"
l characteristic length "Length"
v characteristic speed "Speed"
η dynamic viscosity "DynamicViscosity"
ρ mass density "MassDensity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Reynolds Number Using Dynamic Viscosity"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Reynolds Number Using Dynamic Viscosity"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Reynolds Number Using Dynamic Viscosity"], {QuantityVariable[
   "\[Eta]","DynamicViscosity"] -> Quantity[1, "Centipoise"], 
  QuantityVariable["v","Speed"] -> 
   Quantity[1, ("Meters")/("Seconds")], 
  QuantityVariable["l","Length"] -> Quantity[10, "Centimeters"], 
  QuantityVariable["Re","ReynoldsNumber"] -> 100000}]
Out[3]=

Source Metadata

Publisher Information