Wolfram Computation Meets Knowledge

Poisson Ratio

Poisson's ratio is the signed ratio of transverse strain to axial strain.

The Poisson ratio equals the negative of the original length times the width difference divided by the product of the original width and the length difference.

Formula

QuantityVariable["ν", "PoissonRatio"] == -((QuantityVariable["L", "Length"]*QuantityVariable["δ w", "Width"])/(QuantityVariable["W", "Width"]*QuantityVariable["δ l", "Length"]))

symbol description physical quantity
ν Poisson ratio "PoissonRatio"
L original length "Length"
W original width "Width"
δ l length difference "Length"
δ w width difference "Width"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Poisson Ratio"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Poisson Ratio"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Poisson Ratio"], {QuantityVariable[
   "\[Delta]\[VeryThinSpace]w","Width"] -> 
   Quantity[-0.001`, "Meters"], 
  QuantityVariable["\[Delta]\[VeryThinSpace]l","Length"] -> 
   Quantity[0.004`, "Meters"], 
  QuantityVariable["W","Width"] -> Quantity[2, "Meters"], 
  QuantityVariable["\[Nu]","PoissonRatio"] -> 0.3`}]
Out[3]=

Publisher Information