Wolfram Computation Meets Knowledge

Modified Internal Rate of Return

The modified internal rate of return is a financial measure of an investment's attractiveness.

The modified internal rate of return increases with a net-positive value of positive cash flows and the reinvestment rate. Increasing values of the net-positive value of negative cash flows and finance rate decrease it. The number of time periods also affects the modified internal rate of return.

Formula

QuantityVariable["MIRR", "Unitless"] == -1 + (-((QuantityVariable[Subscript["NPV", "pos"], "Money"]*(1 + QuantityVariable[Subscript["r", "R"], "Unitless"])^QuantityVariable["n", "Unitless"])/(QuantityVariable[Subscript["NPV", "neg"], "Money"]*(1 + QuantityVariable[Subscript["r", "F"], "Unitless"]))))^(-1 + QuantityVariable["n", "Unitless"])^(-1)

symbol description physical quantity
MIRR modified internal rate of return "Unitless"
NPVneg NPV of negative cash flows "Money"
NPVpos NPV of positive cash flows "Money"
rF finance rate "Unitless"
rR reinvestment rate "Unitless"
n time periods "Unitless"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Modified Internal Rate of Return"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Modified Internal Rate of Return"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject["Modified Internal Rate of Return"], {QuantityVariable[
\!\(\*SubscriptBox[\("r"\), \("R"\)]\),"Unitless"] -> 
   Quantity[12, "Percent"], QuantityVariable[
\!\(\*SubscriptBox[\("r"\), \("F"\)]\),"Unitless"] -> 
   Quantity[10, "Percent"], QuantityVariable[
\!\(\*SubscriptBox[\("NPV"\), \("neg"\)]\),"Money"] -> 
   Quantity[-200, "USDollars"], QuantityVariable[
\!\(\*SubscriptBox[\("NPV"\), \("pos"\)]\),"Money"] -> 
   Quantity[500, "USDollars"], 
  QuantityVariable["MIRR","Unitless"] -> 0.4147`}]
Out[3]=

Publisher Information