Wolfram Computation Meets Knowledge

Seismic Moment Using Rupture Area

Seismic moment is a quantity used by seismologists to measure the size of an earthquake.

Seismic moment equals the product of the rupture area, the shear modulus and the average displacement on rupture. The seismic moment magnitude is proportional to the logarithm of the seismic moment.

Formula

{QuantityVariable[Subscript["M", "0"], "Energy"] == QuantityVariable["A", "Area"]*QuantityVariable["μ", "ShearModulus"]*QuantityVariable[OverBar["D"], "Length"], QuantityVariable[Subscript["M", "w"], "Unitless"] == (2*(-9.1 + Log[Quantity[1, "Joules"^(-1)]*QuantityVariable[Subscript["M", "0"], "Energy"]]/Log[10]))/3}

symbol description physical quantity
M0 seismic moment "Energy"
A rupture area "Area"
μ shear modulus "ShearModulus"
average displacement on rupture "Length"
Mw seismic moment magnitude "Unitless"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Seismic Moment Using Rupture Area"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Seismic Moment Using Rupture Area"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Seismic Moment Using Rupture Area"], {QuantityVariable[
\!\(\*OverscriptBox[\("D"\), \(_\)]\),"Length"] -> 
   Quantity[0.2`, "Meters"]}]
Out[3]=

Source Metadata

Publisher Information