Wolfram Computation Meets Knowledge

Angular Velocity under Constant Angular Acceleration

The angular velocity of a body is the rate of change of its angular displacement with respect to time.

The final angular velocity equals the initial angular velocity plus the angular acceleration times time.

Formula

QuantityVariable[Subscript["ω", "f"], "AngularVelocity"] == QuantityVariable["t", "Time"]*QuantityVariable["α", "AngularAcceleration"] + QuantityVariable[Subscript["ω", "i"], "AngularVelocity"]

symbol description physical quantity
ωf final angular velocity "AngularVelocity"
t time "Time"
α angular acceleration "AngularAcceleration"
ωi initial angular velocity "AngularVelocity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Angular Velocity under Constant Angular Acceleration"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Angular Velocity under Constant Angular Acceleration"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Angular Velocity under Constant Angular Acceleration"], \
{QuantityVariable[
\!\(\*SubscriptBox[\("\[Omega]"\), \("i"\)]\),"AngularVelocity"] -> 
   Quantity[0, ("Radians")/("Seconds")], QuantityVariable[
\!\(\*SubscriptBox[\("\[Omega]"\), \("f"\)]\),"AngularVelocity"] -> 
   Quantity[1, ("Radians")/("Seconds")], 
  QuantityVariable["t","Time"] -> Quantity[1, "Seconds"]}]
Out[3]=

Publisher Information