Material Moduli Relationship
The material moduli relationship describes the relationship between the Young's modulus and the torsion modulus.
The torsion modulus equals the Young's modulus divided by twice the sum of 1 and the Poisson ratio.
Formula
![Copy to Clipboard QuantityVariable["G", "Stress"] == QuantityVariable["E", "YoungsModulus"]/(2*(1 + QuantityVariable["ν", "PoissonRatio"]))](https://www.wolframcloud.com/objects/resourcesystem/marketplacestorage/resources/b06/b06820b6-b678-4142-af49-22d96e21e4a0/Webpage/FormulaImage.png)
| symbol | description | physical quantity | 
|---|---|---|
| G | torsion modulus | "Stress" | 
| E | Young's modulus | "YoungsModulus" | 
| ν | Poisson ratio | "PoissonRatio" | 
Forms
Examples
Get the resource:
| In[1]:= | ![ResourceObject["Material Moduli Relationship"]](images/b06/b06820b6-b678-4142-af49-22d96e21e4a0-io-1-i.en.gif) | 
| Out[1]= |  | 
Get the formula:
| In[2]:= | ![FormulaData[ResourceObject["Material Moduli Relationship"]]](images/b06/b06820b6-b678-4142-af49-22d96e21e4a0-io-2-i.en.gif) | 
| Out[2]= |  | 
Use some values:
| In[3]:= | ![FormulaData[
 ResourceObject[
  "Material Moduli Relationship"], {QuantityVariable["G","Stress"] -> 
   Quantity[210, "Gigapascals"]}]](images/b06/b06820b6-b678-4142-af49-22d96e21e4a0-io-3-i.en.gif) | 
| Out[3]= |  | 
 
                 
                