Jeans Length Using Temperature
The Jeans length is the critical radius for the instability of a collapsing thermalized cloud of selfgravitating gas.
Jeans length is proportional to the square root of the temperature divided by the mean mass per particle and the mass density.
Formula
![Copy to Clipboard QuantityVariable[Subscript["R", "J"], "Length"] == (Sqrt[15/Pi]*Sqrt[(Quantity[1, "BoltzmannConstant"/"GravitationalConstant"]*QuantityVariable["T", "Temperature"])/(QuantityVariable["μ", "Mass"]*QuantityVariable["ρ", "MassDensity"])])/2](https://www.wolframcloud.com/objects/resourcesystem/marketplacestorage/resources/aa8/aa85b2ac-e60f-4880-803d-9a16998ed775/Webpage/FormulaImage.png)
| symbol | description | physical quantity |
|---|---|---|
| RJ | Jeans length | "Length" |
| T | temperature | "Temperature" |
| μ | mean mass per particle | "Mass" |
| ρ | mass density | "MassDensity" |
Forms
Examples
Get the resource:
| In[1]:= |
| Out[1]= | ![]() |
Get the formula:
| In[2]:= |
| Out[2]= | ![]() |
Use some values:
| In[3]:= | ![]() |
| Out[3]= | ![]() |


![FormulaData[
ResourceObject["Jeans Length Using Temperature"], {QuantityVariable[
\!\(\*SubscriptBox[\("R"\), \("J"\)]\),"Length"] ->
Quantity[2.624`4.*^14, "Kilometers"],
QuantityVariable["\[Rho]","MassDensity"] ->
Quantity[6.69489`6.*^-24, ("Kilograms")/("Centimeters")^3]}]](images/aa8/aa85b2ac-e60f-4880-803d-9a16998ed775-io-3-i.en.gif)
