Wolfram Computation Meets Knowledge

Torus Volume

A torus is a surface of revolution generated by revolving a circle in three-dimensional space about an axis coplanar with the circle. The volume is the space contained within the resulting surface.

The volume is proportional to the product of the radius of the tube squared and the distance from the center of the tube to the center of the torus.

Formula

QuantityVariable["V", "Volume"] == 2*Pi^2*QuantityVariable[Subscript["R", "1"], "Radius"]*QuantityVariable[Subscript["R", "2"], "Radius"]^2

symbol description physical quantity
V volume "Volume"
R1 radius 1 "Radius"
R2 radius 2 "Radius"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Torus Volume"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Torus Volume"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Torus Volume"], {QuantityVariable["V","Volume"] -> 
   Quantity[40 \[Pi]^2, ("Centimeters")^3]}]
Out[3]=

Publisher Information