Wolfram Computation Meets Knowledge

Prandtl Number Using Thermal Conductivity

The Prandtl number is a dimensionless number defined as the ratio of momentum diffusivity to thermal diffusivity.

The Prandtl number equals the specific heat capacity times the dynamic viscosity divided by the thermal conductivity.

Formula

QuantityVariable["Pr", "PrandtlNumberHeatTransfer"] == (QuantityVariable["c", "SpecificHeatCapacity"]*QuantityVariable["η", "DynamicViscosity"])/QuantityVariable["k", "ThermalConductivity"]

symbol description physical quantity
Pr Prandtl number for heat transfer "PrandtlNumberHeatTransfer"
c specific heat capacity "SpecificHeatCapacity"
k thermal conductivity "ThermalConductivity"
η dynamic viscosity "DynamicViscosity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Prandtl Number Using Thermal Conductivity"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject["Prandtl Number Using Thermal Conductivity"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Prandtl Number Using Thermal Conductivity"], {QuantityVariable[
   "k","ThermalConductivity"] -> 
   Quantity[1, ("Watts")/("KelvinsDifference" "Meters")], 
  QuantityVariable["Pr","PrandtlNumberHeatTransfer"] -> 0.001`, 
  QuantityVariable["c","SpecificHeatCapacity"] -> 
   Quantity[0.1`, ("Joules")/("KelvinsDifference" "Kilograms")]}]
Out[3]=

Publisher Information