Wolfram Computation Meets Knowledge

Seismic Moment Using Rupture Dimensions

Seismic moment is a quantity used by seismologists to measure the size of an earthquake.

Seismic moment equals the product of the rupture length, the rupture width, the shear modulus and the average displacement on rupture. The seismic moment magnitude is proportional to the logarithm of the seismic moment.

Formula

{QuantityVariable[Subscript["M", "0"], "Energy"] == QuantityVariable["L", "Length"]*QuantityVariable["W", "Width"]*QuantityVariable["μ", "ShearModulus"]*QuantityVariable[OverBar["D"], "Length"], QuantityVariable[Subscript["M", "w"], "Unitless"] == (2*(-9.1 + Log[Quantity[1, "Joules"^(-1)]*QuantityVariable[Subscript["M", "0"], "Energy"]]/Log[10]))/3}

symbol description physical quantity
M0 seismic moment "Energy"
L rupture length "Length"
W rupture width "Width"
μ shear modulus "ShearModulus"
average displacement on rupture "Length"
Mw seismic moment magnitude "Unitless"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Seismic Moment Using Rupture Dimensions"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Seismic Moment Using Rupture Dimensions"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Seismic Moment Using Rupture Dimensions"], {QuantityVariable[
\!\(\*SubscriptBox[\("M"\), \("w"\)]\),"Unitless"] -> 5.7`, 
  QuantityVariable[
\!\(\*OverscriptBox[\("D"\), \(_\)]\),"Length"] -> 
   Quantity[0.2`, "Meters"]}]
Out[3]=

Source Metadata

Publisher Information