Wolfram Computation Meets Knowledge

Lewis Number Using Thermal Conductivity

The Lewis number is a dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass transfer.

The Lewis number equals the thermal conductivity divided by the specific heat capacity, diffusion coefficient and mass density.

Formula

QuantityVariable["Le", "LewisNumber"] == QuantityVariable["k", "ThermalConductivity"]/(QuantityVariable["c", "SpecificHeatCapacity"]*QuantityVariable["D", "DiffusionCoefficient"]*QuantityVariable["ρ", "MassDensity"])

symbol description physical quantity
Le Lewis number "LewisNumber"
c specific heat capacity "SpecificHeatCapacity"
D diffusion coefficient "DiffusionCoefficient"
k thermal conductivity "ThermalConductivity"
ρ mass density "MassDensity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Lewis Number Using Thermal Conductivity"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Lewis Number Using Thermal Conductivity"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Lewis Number Using Thermal Conductivity"], {QuantityVariable[
   "c","SpecificHeatCapacity"] -> 
   Quantity[0.1`, ("Joules")/("KelvinsDifference" "Kilograms")], 
  QuantityVariable["\[Rho]","MassDensity"] -> 
   Quantity[1, ("Kilograms")/("Meters")^3], 
  QuantityVariable["k","ThermalConductivity"] -> 
   Quantity[1, ("Watts")/("KelvinsDifference" "Meters")]}]
Out[3]=

Publisher Information