Wolfram Computation Meets Knowledge

Bose–Einstein Condensation Temperature for Noninteracting Bosons Using Pressure

The Bose–Einstein condensation temperature is the temperature at which a free Bose gas transitions to a Bose–Einstein condensate. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which point macroscopic quantum phenomena become apparent.

The Bose-Einstein condensation temperature increases as the square of the cubic root of pressure increases, and increases inversely with the mass of each boson.

Formula

QuantityVariable[Subscript["T", "c"], "Temperature"] == (Quantity[(2*Pi)/Zeta[3/2]^(2/3), "ReducedPlanckConstant"^2/"BoltzmannConstant"]*((Quantity[1, "BoltzmannConstant"^(-1)]*QuantityVariable["P", "Pressure"])/((1 + 2*QuantityVariable["s", "Unitless"])*QuantityVariable[Subscript["T", "c"], "Temperature"]))^(2/3))/QuantityVariable["m", "Mass"]

symbol description physical quantity
Tc Bose condensation temperature "Temperature"
m mass "Mass"
P pressure "Pressure"
s particle spin "Unitless"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Bose\[Dash]Einstein Condensation Temperature for \
Noninteracting Bosons Using Pressure"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Bose\[Dash]Einstein Condensation Temperature for Noninteracting \
Bosons Using Pressure"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Bose\[Dash]Einstein Condensation Temperature for Noninteracting \
Bosons Using Pressure"], {QuantityVariable[
\!\(\*SubscriptBox[\("T"\), \("c"\)]\),"Temperature"] -> None, 
  QuantityVariable["P","Pressure"] -> 
   Quantity[0.0497`, "Atmospheres"], 
  QuantityVariable["m","Mass"] -> Quantity[4, "AtomicMassUnit"]}]
Out[3]=

Source Metadata

Publisher Information