Wolfram Computation Meets Knowledge

Blasius Displacement Thickness

A Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate, which is held parallel to a constant unidirectional flow.

The Blasius displacement thickness increases as the square root of the distance along the plate and the dynamic viscosity. It decreases as the square root of the fluid density and the freestream velocity.

Formula

QuantityVariable[Subscript["δ", "1"], "Thickness"] == 1.72*Sqrt[(QuantityVariable["x", "Length"]*QuantityVariable["η", "DynamicViscosity"])/(QuantityVariable["ρ", "MassDensity"]*QuantityVariable[Subscript["U", "∞"], "Speed"])]

symbol description physical quantity
δ1 Blasius displacement thickness "Thickness"
x distance along plate "Length"
η dynamic viscosity "DynamicViscosity"
ρ fluid density "MassDensity"
U freestream velocity "Speed"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Blasius Displacement Thickness"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Blasius Displacement Thickness"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject["Blasius Displacement Thickness"], {QuantityVariable[
\!\(\*SubscriptBox[\("U"\), \("\[Infinity]"\)]\),"Speed"] -> 
   Quantity[1, ("Meters")/("Seconds")], 
  QuantityVariable["\[Eta]","DynamicViscosity"] -> 
   Quantity[0.001003`, "Pascals" "Seconds"], QuantityVariable[
\!\(\*SubscriptBox[\("\[Delta]"\), \("1"\)]\),"Thickness"] -> 
   Quantity[0.00054`, "Meters"]}]
Out[3]=

Source Metadata

Publisher Information