Wolfram Computation Meets Knowledge

Dittus–Boelter Equation

The Dittus–Boelter equation (for turbulent flow) is an explicit function for calculating the Nusselt number. The Nusselt number is the ratio of convective to conductive heat transfer across (normal to) the boundary.

The Nusselt number is proportional to the Prandtl number for heat transfer to the heating exponent times the Reynolds number to the four-fifths power.

Formula

QuantityVariable["Nu", "NusseltNumberHeatTransfer"] == 0.023*QuantityVariable["Pr", "PrandtlNumberHeatTransfer"]^QuantityVariable["n", "Unitless"]*QuantityVariable["Re", "ReynoldsNumber"]^(4/5)

symbol description physical quantity
Nu Nusselt number for heat transfer "NusseltNumberHeatTransfer"
Pr Prandtl number for heat transfer "PrandtlNumberHeatTransfer"
n heating exponent "Unitless"
Re Reynolds number "ReynoldsNumber"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Dittus\[Dash]Boelter Equation"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Dittus\[Dash]Boelter Equation"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Dittus\[Dash]Boelter Equation"], {QuantityVariable[
   "n","Unitless"] -> 0.4`}]
Out[3]=

Publisher Information