Wolfram Computation Meets Knowledge

Simple Boiling-Point Elevation Equation

Boiling-point elevation describes the phenomenon that the boiling point of a liquid (a solvent) will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent. This formula assumes dilute ideal nonvolatile solutions.

Boiling-point elevation equals the solution molality times the ebullioscopic constant.

Formula

QuantityVariable[Subscript["Δ​T", "b"], "TemperatureDifference"] == QuantityVariable["m", "Molality"]*QuantityVariable[Subscript["K", "b"], "MolalBoilingPointElevationConstant"]

symbol description physical quantity
Δ​Tb boiling point elevation "TemperatureDifference"
m solution molality "Molality"
Kb ebullioscopic constant "MolalBoilingPointElevationConstant"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Simple Boiling-Point Elevation Equation"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Simple Boiling-Point Elevation Equation"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Simple Boiling-Point Elevation Equation"], {QuantityVariable[
\!\(\*SubscriptBox[\("\[CapitalDelta]\[InvisibleSpace]T"\), \
\("b"\)]\),"TemperatureDifference"] -> 
   Quantity[1.`, "KelvinsDifference"]}]
Out[3]=

Publisher Information