Wolfram Computation Meets Knowledge

Bose–Einstein Distribution for Non-interacting Bosons

The Bose­Einstein distribution describes the occupancy of an energy state within a Bose­Einstein condensate.

The occupancy number of a states of a Bose\[Hyphen]Einstein condensate depends on the particle spin, the chamical potential, the energy of the state, the temperature and the amount of material present.

Formula

QuantityVariable[OverBar[Subscript["n", "i"]], "Unitless"] == (1 + 2*QuantityVariable["s", "Unitless"])/(-1 + E^((Quantity[1, "BoltzmannConstant"^(-1)]*(-(QuantityVariable["n", "Amount"]*QuantityVariable["μ", "ChemicalPotential"]) + QuantityVariable[Subscript["E", "i"], "Energy"]))/QuantityVariable["T", "Temperature"]))

symbol description physical quantity
n i̅ occupation number "Unitless"
T temperature "Temperature"
n amount "Amount"
μ chemical potential "ChemicalPotential"
Ei state energy "Energy"
s particle spin "Unitless"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Bose\[Dash]Einstein Distribution for Non-interacting \
Bosons"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Bose\[Dash]Einstein Distribution for Non-interacting Bosons"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Bose\[Dash]Einstein Distribution for Non-interacting Bosons"], \
{QuantityVariable["\[Mu]","ChemicalPotential"] -> 
   Quantity[0, ("AvogadroNumber" "Electronvolts")/("Moles")]}]
Out[3]=

Source Metadata

Publisher Information