Bose–Einstein Distribution for Non-interacting Bosons
The BoseEinstein distribution describes the occupancy of an energy state within a BoseEinstein condensate.
The occupancy number of a states of a Bose\[Hyphen]Einstein condensate depends on the particle spin, the chamical potential, the energy of the state, the temperature and the amount of material present.
Formula
![Copy to Clipboard QuantityVariable[OverBar[Subscript["n", "i"]], "Unitless"] == (1 + 2*QuantityVariable["s", "Unitless"])/(-1 + E^((Quantity[1, "BoltzmannConstant"^(-1)]*(-(QuantityVariable["n", "Amount"]*QuantityVariable["μ", "ChemicalPotential"]) + QuantityVariable[Subscript["E", "i"], "Energy"]))/QuantityVariable["T", "Temperature"]))](https://www.wolframcloud.com/objects/resourcesystem/marketplacestorage/resources/871/87193d28-1bf4-4c2a-a99c-c67378da4d21/Webpage/FormulaImage.png)
| symbol | description | physical quantity |
|---|---|---|
| n i̅ | occupation number | "Unitless" |
| T | temperature | "Temperature" |
| n | amount | "Amount" |
| μ | chemical potential | "ChemicalPotential" |
| Ei | state energy | "Energy" |
| s | particle spin | "Unitless" |
Forms
Examples
Get the resource:
| In[1]:= |
| Out[1]= | ![]() |
Get the formula:
| In[2]:= |
| Out[2]= | ![]() |
Use some values:
| In[3]:= |
| Out[3]= | ![]() |


