Wolfram Computation Meets Knowledge

Bethe Formula

The Bethe formula describes the mean energy loss per distance traveled of swift-charged particles (protons, alpha particles, atomic ions) traversing matter (or, alternatively, the stopping power of the material).

The Bethe formula shows how the stopping power declines with speed electric charge and electron density.

Formula

QuantityVariable["-dE/dx", "LinearStoppingPower"] == (Quantity[1/(4*Pi), "ElementaryCharge"^5/("ElectricConstant"^2*"ElectronMass"*"SpeedOfLight")]*QuantityVariable["n", "InverseVolume"]*(Log[(Quantity[2, "ElectronMass"]*QuantityVariable["v", "Speed"]^2)/(QuantityVariable["I", "Energy"]*(1 + Quantity[-1, "SpeedOfLight"^(-2)]*QuantityVariable["v", "Speed"]^2))] + Quantity[-1, "SpeedOfLight"^(-2)]*QuantityVariable["v", "Speed"]^2))/(QuantityVariable["Q", "ElectricCharge"]*QuantityVariable["v", "Speed"])

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Bethe Formula"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Bethe Formula"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Bethe Formula"], {QuantityVariable["Q","ElectricCharge"] -> 
   Quantity[82, "ElementaryCharge"], 
  QuantityVariable["-dE/dx","LinearStoppingPower"] -> 
   Quantity[19.25`, ("Megaelectronvolts")/("Centimeters")], 
  QuantityVariable["I","Energy"] -> Quantity[820, "Electronvolts"]}]
Out[3]=

Source Metadata

Publisher Information