Wolfram Computation Meets Knowledge

Richter Scale Magnitude

The Richter magnitude scale assigns a magnitude number to quantify the size of an earthquake. The Richter scale is a base 10 logarithmic scale, which defines magnitude as the logarithm of the ratio of the amplitude of the seismic waves to an arbitrary, minor amplitude, as recorded on a standardized seismograph at a standard distance.

The Richter scale magnitude is proportional to the logarithm of the maximum trace amplitude plus the distance from station to hypocenter.

Formula

QuantityVariable[Subscript["M", "L"], "Unitless"] == -2.09 + Log[Quantity[1/2080, "Nanometers"^(-1)]*QuantityVariable["A", "Distance"]]/Log[10] + 0.4820668749126095*Log[Quantity[1, "Kilometers"^(-1)]*QuantityVariable[Subscript["R", "hyp"], "Distance"]] + Quantity[0.00189, "Kilometers"^(-1)]*QuantityVariable[Subscript["R", "hyp"], "Distance"]

symbol description physical quantity
ML Richter scale magnitude "Unitless"
A maximum trace amplitude "Distance"
Rhyp distance from station to hypocenter "Distance"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Richter Scale Magnitude"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Richter Scale Magnitude"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Richter Scale Magnitude"], {QuantityVariable["A","Distance"] -> 
   Quantity[1, "Millimeters"]}]
Out[3]=

Source Metadata

Publisher Information