Wolfram Computation Meets Knowledge

Fourier Number for Mass Transfer

The Fourier number is a dimensionless number that characterizes transient heat conduction. Conceptually, it is the ratio of diffusive or conductive transport rate to the quantity storage rate, where the quantity may be either heat (thermal energy) or matter (particles).

The Fourier number for mass transfer is the characteristic time interval times the diffusion coefficient divided by the characteristic length squared.

Formula

QuantityVariable[SuperStar["Fo"], "FourierNumberMassTransfer"] == (QuantityVariable["D", "DiffusionCoefficient"]*QuantityVariable["t", "Time"])/QuantityVariable["l", "Length"]^2

symbol description physical quantity
Fo* Fourier number for mass transfer "FourierNumberMassTransfer"
D diffusion coefficient "DiffusionCoefficient"
l characteristic length "Length"
t characteristic time interval "Time"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Fourier Number for Mass Transfer"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Fourier Number for Mass Transfer"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Fourier Number for Mass Transfer"], {QuantityVariable[
   "l","Length"] -> Quantity[1, "Meters"], 
  QuantityVariable[SuperStar["Fo"],"FourierNumberMassTransfer"] -> 1}]
Out[3]=

Publisher Information