Wolfram Computation Meets Knowledge

Fresnel Equations for S-Polarized Light

The Fresnel equations calculate the reflection and transmission coefficients for light incident on an interface between media of differing refractive indices.

The transmission coefficient for s\[Hyphen]polarized incident light equals 1 minus the reflection coefficient. The reflection coefficient depends on the angle of incidence and the indices of refraction of the two media.

Formula

{QuantityVariable[Subscript["R", "s"], "Unitless"] == (Cos[QuantityVariable[Subscript["θ", "1"], "Angle"]]*QuantityVariable[Subscript["n", "1"], "Unitless"] - QuantityVariable[Subscript["n", "2"], "Unitless"]*Sqrt[1 - (QuantityVariable[Subscript["n", "1"], "Unitless"]^2*Sin[QuantityVariable[Subscript["θ", "1"], "Angle"]]^2)/QuantityVariable[Subscript["n", "2"], "Unitless"]^2])^2/(Cos[QuantityVariable[Subscript["θ", "1"], "Angle"]]*QuantityVariable[Subscript["n", "1"], "Unitless"] + QuantityVariable[Subscript["n", "2"], "Unitless"]*Sqrt[1 - (QuantityVariable[Subscript["n", "1"], "Unitless"]^2*Sin[QuantityVariable[Subscript["θ", "1"], "Angle"]]^2)/QuantityVariable[Subscript["n", "2"], "Unitless"]^2])^2, QuantityVariable[Subscript["T", "s"], "Unitless"] == 1 - QuantityVariable[Subscript["R", "s"], "Unitless"]}

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Fresnel Equations for S-Polarized Light"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Fresnel Equations for S-Polarized Light"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Fresnel Equations for S-Polarized Light"], {QuantityVariable[
\!\(\*SubscriptBox[\("R"\), \("s"\)]\),"Unitless"] -> 0.5`, 
  QuantityVariable[
\!\(\*SubscriptBox[\("T"\), \("s"\)]\),"Unitless"] -> None}]
Out[3]=

Source Metadata

Publisher Information