Black Hole Surface Gravity
The surface gravity of a black hole with a static Killing horizon is the acceleration, as exerted at infinity, needed to keep an object at the horizon.
The surface gravity of a black hole decreases with increasing mass or charge, and increases with increasing angular momentum.
Formula
![Copy to Clipboard QuantityVariable["k", "GravitationalAcceleration"] == (Quantity[1, "SpeedOfLight"^2]*Sqrt[(Quantity[-1, "SpeedOfLight"^(-2)]*QuantityVariable["J", "AngularMomentum"]^2)/QuantityVariable["M", "Mass"]^2 + Quantity[1, "GravitationalConstant"^2/"SpeedOfLight"^4]*QuantityVariable["M", "Mass"]^2 + Quantity[-1/(4*Pi), "GravitationalConstant"/("ElectricConstant"*"SpeedOfLight"^4)]*QuantityVariable["Q", "ElectricCharge"]^2])/(Quantity[-1/(4*Pi), "GravitationalConstant"/("ElectricConstant"*"SpeedOfLight"^4)]*QuantityVariable["Q", "ElectricCharge"]^2 + Quantity[2, "GravitationalConstant"/"SpeedOfLight"^2]*QuantityVariable["M", "Mass"]*(Quantity[1, "GravitationalConstant"/"SpeedOfLight"^2]*QuantityVariable["M", "Mass"] + Sqrt[(Quantity[-1, "SpeedOfLight"^(-2)]*QuantityVariable["J", "AngularMomentum"]^2)/QuantityVariable["M", "Mass"]^2 + Quantity[1, "GravitationalConstant"^2/"SpeedOfLight"^4]*QuantityVariable["M", "Mass"]^2 + Quantity[-1/(4*Pi), "GravitationalConstant"/("ElectricConstant"*"SpeedOfLight"^4)]*QuantityVariable["Q", "ElectricCharge"]^2]))](https://www.wolframcloud.com/objects/resourcesystem/marketplacestorage/resources/791/7917bde2-9e00-4317-baff-25c1cc940b46/Webpage/FormulaImage.png)
| symbol | description | physical quantity |
|---|---|---|
| k | surface gravity | "GravitationalAcceleration" |
| J | angular momentum | "AngularMomentum" |
| M | mass | "Mass" |
| Q | electric charge | "ElectricCharge" |
Forms
Examples
Get the resource:
| In[1]:= |
| Out[1]= | ![]() |
Get the formula:
| In[2]:= |
| Out[2]= | ![]() |
Use some values:
| In[3]:= | ![]() |
| Out[3]= |


![FormulaData[
ResourceObject[
"Black Hole Surface Gravity"], {QuantityVariable[
"k","GravitationalAcceleration"] ->
Quantity[1.`*^11, ("Meters")/("Seconds")^2],
QuantityVariable["M","Mass"] -> Quantity[2.`*^30, "Kilograms"],
QuantityVariable["J","AngularMomentum"] ->
Quantity[1.`*^-19, "Joules" "Seconds"]}]](images/791/7917bde2-9e00-4317-baff-25c1cc940b46-io-3-i.en.gif)