Wolfram Computation Meets Knowledge

Ellipsoid Volume

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

The volume of an ellipsoid equals four-thirds \[Pi] times the product of the semiaxes.

Formula

QuantityVariable["V", "Volume"] == (4*Pi*QuantityVariable["a", "Length"]*QuantityVariable["b", "Length"]*QuantityVariable["c", "Length"])/3

symbol description physical quantity
V volume "Volume"
a first semiaxis "Length"
b second semiaxis "Length"
c third semiaxis "Length"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Ellipsoid Volume"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Ellipsoid Volume"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Ellipsoid Volume"], {QuantityVariable["c","Length"] -> 
   Quantity[4, "Centimeters"], 
  QuantityVariable["a","Length"] -> Quantity[5, "Centimeters"]}]
Out[3]=

Publisher Information