Wolfram Computation Meets Knowledge

Maximum Spring Force

The maximum spring force is the maximum force the spring can exert before permanent deformation.

The maximum spring force increases linearly with the free length of a spring, spring wire diameter and its Young's modulus. It decreases with the Poisson ratio, the number of active windings and the cube of the spring outer diameter.

Formula

QuantityVariable[Subscript["F", "max"], "Force"] == (QuantityVariable["d", "Diameter"]^4*QuantityVariable["E", "YoungsModulus"]*(QuantityVariable["L", "Length"] - QuantityVariable["d", "Diameter"]*QuantityVariable["n", "Unitless"]))/(16*(-QuantityVariable["d", "Diameter"] + QuantityVariable["D", "Diameter"])^3*QuantityVariable["n", "Unitless"]*(1 + QuantityVariable["ν", "PoissonRatio"]))

symbol description physical quantity
Fmax maximum spring force "Force"
d spring wire diameter "Diameter"
D spring outer diameter "Diameter"
E Young's modulus "YoungsModulus"
n number of active windings "Unitless"
L free length of spring "Length"
ν Poisson ratio "PoissonRatio"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Maximum Spring Force"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Maximum Spring Force"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Maximum Spring Force"], {QuantityVariable[
   "\[Nu]","PoissonRatio"] -> 0.3`, 
  QuantityVariable["n","Unitless"] -> 5, 
  QuantityVariable["L","Length"] -> Quantity[50, "Centimeters"]}]
Out[3]=

Publisher Information