Wolfram Computation Meets Knowledge

Intensity Ratio for Apparent Magnitude

The apparent magnitude of a celestial object is a number that is a measure of its brightness as seen by an observer on Earth.

The ratio of celestial intensities equals ten taken to the power of the two-fifths of the difference in apparent magnitudes.

Formula

QuantityVariable[Subscript["I", "1"]/Subscript["I", "2"], "Unitless"] == 10^((2*(-QuantityVariable[Subscript["m", "1"], "Unitless"] + QuantityVariable[Subscript["m", "2"], "Unitless"]))/5)

symbol description physical quantity
I1/I2
intensity ratio
"Unitless"
m1 apparent magnitude 1 "Unitless"
m2 apparent magnitude 2 "Unitless"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Intensity Ratio for Apparent Magnitude"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Intensity Ratio for Apparent Magnitude"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Intensity Ratio for Apparent Magnitude"], {QuantityVariable[
\!\(\*SubscriptBox[\("I"\), \("1"\)]\)/
\!\(\*SubscriptBox[\("I"\), \("2"\)]\),"Unitless"] -> 10^(2/5), 
  QuantityVariable[
\!\(\*SubscriptBox[\("m"\), \("1"\)]\),"Unitless"] -> 1}]
Out[3]=

Source Metadata

Publisher Information