Wolfram Computation Meets Knowledge

Equation of Motion Using Angular Displacement

Equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.

The final angular velocity squared equals the initial angular velocity squared plus twice the angular acceleration times the angular displacement.

Formula

QuantityVariable[Subscript["ω", "f"], "AngularVelocity"]^2 == 2*QuantityVariable["α", "AngularAcceleration"]*QuantityVariable["θ", "Angle"] + QuantityVariable[Subscript["ω", "i"], "AngularVelocity"]^2

symbol description physical quantity
ωf final angular velocity "AngularVelocity"
α angular acceleration "AngularAcceleration"
θ angular displacement "Angle"
ωi initial angular velocity "AngularVelocity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Equation of Motion Using Angular Displacement"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject["Equation of Motion Using Angular Displacement"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Equation of Motion Using Angular Displacement"], \
{QuantityVariable[
\!\(\*SubscriptBox[\("\[Omega]"\), \("f"\)]\),"AngularVelocity"] -> 
   Quantity[1, ("Radians")/("Seconds")], QuantityVariable[
\!\(\*SubscriptBox[\("\[Omega]"\), \("i"\)]\),"AngularVelocity"] -> 
   Quantity[0, ("Radians")/("Seconds")], 
  QuantityVariable["\[Theta]","Angle"] -> Quantity[1, "Radians"]}]
Out[3]=

Publisher Information