Wolfram Computation Meets Knowledge

Two Infinitely Long Parallel Wires

Currents passing through two infinitely long parallel wires create a magnetic force between the two.

The force on a segment of two infinitely long parallel wires is proportional to the product of the length of the segment and the electrical currents in the wires divided by the distance between them.

Formula

QuantityVariable["Δ​F", "Force"] == (Quantity[1/(2*Pi), "MagneticConstant"]*QuantityVariable["Δ​L", "Length"]*QuantityVariable[Subscript["I", "1"], "ElectricCurrent"]*QuantityVariable[Subscript["I", "2"], "ElectricCurrent"])/QuantityVariable["d", "Distance"]

symbol description physical quantity
Δ​F force on a segment "Force"
d distance "Distance"
Δ​L length of a segment "Length"
I1 electrical current 1 "ElectricCurrent"
I2 electrical current 2 "ElectricCurrent"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Two Infinitely Long Parallel Wires"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Two Infinitely Long Parallel Wires"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Two Infinitely Long Parallel Wires"], {QuantityVariable[
   "\[CapitalDelta]\[InvisibleSpace]F","Force"] -> 
   Quantity[2.`*^-7, "Newtons"], 
  QuantityVariable["\[CapitalDelta]\[InvisibleSpace]L","Length"] -> 
   Quantity[1, "Meters"], QuantityVariable[
\!\(\*SubscriptBox[\("I"\), \("2"\)]\),"ElectricCurrent"] -> 
   Quantity[1, "Amperes"]}]
Out[3]=

Source Metadata

Publisher Information