Wolfram Computation Meets Knowledge

Isochoric Process

An isochoric process is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant.

The final temperature divided by the final pressure equals the initial temperature divided by the initial pressure. The initial and final volumes are equal. The work done on the system is zero. The heat transferred to the system equals the isochoric heat capacity times the difference between the final and initial temperatures. The entropy change equals the isochoric heat capacity times the natural logarithm of the ratio of the final temperature to the initial temperature.

Formula

{QuantityVariable[Subscript["T", "f"], "Temperature"]/QuantityVariable[Subscript["p", "f"], "Pressure"] == QuantityVariable[Subscript["T", "i"], "Temperature"]/QuantityVariable[Subscript["p", "i"], "Pressure"], QuantityVariable[Subscript["V", "f"], "Volume"] == QuantityVariable[Subscript["V", "i"], "Volume"], QuantityVariable["W", "Work"] == 0, QuantityVariable["Q", "Heat"] == QuantityVariable[Subscript["C", "V"], "HeatCapacity"]*(QuantityVariable[Subscript["T", "f"], "Temperature"] - QuantityVariable[Subscript["T", "i"], "Temperature"]), QuantityVariable["Δ​S", "Entropy"] == Log[QuantityVariable[Subscript["T", "f"], "Temperature"]/QuantityVariable[Subscript["T", "i"], "Temperature"]]*QuantityVariable[Subscript["C", "V"], "HeatCapacity"]}

symbol description physical quantity
pf final pressure "Pressure"
Tf final temperature "Temperature"
pi initial pressure "Pressure"
Ti initial temperature "Temperature"
Vf final volume "Volume"
Vi initial volume "Volume"
W work done on the system "Work"
Q heat transferred to the system "Heat"
CV isochoric heat capacity "HeatCapacity"
Δ​S entropy change "Entropy"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Isochoric Process"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Isochoric Process"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[ResourceObject["Isochoric Process"], {QuantityVariable[
\!\(\*SubscriptBox[\("V"\), \("f"\)]\),"Volume"] -> 
   Quantity[1, ("Meters")^3], 
  QuantityVariable["Q","Heat"] -> Quantity[70, "Kilojoules"], 
  QuantityVariable["\[CapitalDelta]\[InvisibleSpace]S","Entropy"] -> 
   Quantity[200, ("Joules")/("Kelvins")], QuantityVariable[
\!\(\*SubscriptBox[\("V"\), \("i"\)]\),"Volume"] -> 
   Quantity[1, ("Meters")^3], QuantityVariable[
\!\(\*SubscriptBox[\("C"\), \("V"\)]\),"HeatCapacity"] -> 
   Quantity[718, ("Joules")/("KelvinsDifference")]}]
Out[3]=

Publisher Information