Wolfram Computation Meets Knowledge

Thermal de Broglie Wavelength

The thermal de Broglie wavelength is roughly the average de Broglie wavelength of the gas particles in an ideal gas at the specified temperature.

The thermal de Broglie wavelength increases with the number of dimensions and the dispersion relation constants a and s. It decreases with temperature.

Formula

QuantityVariable["Λ", "Wavelength"] == (Gamma[1 + QuantityVariable["n", "Unitless"]/2]/Gamma[1 + QuantityVariable["n", "Unitless"]/QuantityVariable["s", "Unitless"]])^QuantityVariable["n", "Unitless"]^(-1)*Quantity[1, "Meters"/("Joules"*"Seconds")]*((Quantity[1, "Joules"/"BoltzmannConstant"]*QuantityVariable["a", "Unitless"])/QuantityVariable["T", "Temperature"])^QuantityVariable["s", "Unitless"]^(-1)*Row[{Quantity[1/Sqrt[Pi], "PlanckConstant"]}]

symbol description physical quantity
Λ thermal de Broglie wavelength "Wavelength"
n number of dimensions "Unitless"
s dispersion relation constant s "Unitless"
a dispersion relation constant a "Unitless"
T temperature "Temperature"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Thermal de Broglie Wavelength"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Thermal de Broglie Wavelength"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Thermal de Broglie Wavelength"], {QuantityVariable[
   "n","Unitless"] -> 3}]
Out[3]=

Source Metadata

Publisher Information