Wolfram Computation Meets Knowledge

Boyle's Law

The absolute pressure exerted by a given mass of an ideal gas is inversely proportional to the volume it occupies if the temperature and amount of gas remain unchanged within a closed system.

Boyle's law says that the product of the initial pressure and volume equals the product of the final presure and volume.

Formula

QuantityVariable[Subscript["P", "1"], "Pressure"]*QuantityVariable[Subscript["V", "1"], "Volume"] == QuantityVariable[Subscript["P", "2"], "Pressure"]*QuantityVariable[Subscript["V", "2"], "Volume"]

symbol description physical quantity
P1 initial pressure "Pressure"
V1 initial volume "Volume"
P2 final pressure "Pressure"
V2 final volume "Volume"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Boyle's Law"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Boyle's Law"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[ResourceObject["Boyle's Law"], {QuantityVariable[
\!\(\*SubscriptBox[\("V"\), \("1"\)]\),"Volume"] -> 
   Quantity[10, "Liters"], QuantityVariable[
\!\(\*SubscriptBox[\("P"\), \("2"\)]\),"Pressure"] -> 
   Quantity[0.2`, "Atmospheres"], QuantityVariable[
\!\(\*SubscriptBox[\("P"\), \("1"\)]\),"Pressure"] -> 
   Quantity[1, "Atmospheres"]}]
Out[3]=

Source Metadata

Publisher Information