Wolfram Computation Meets Knowledge

Diesel Cycle

The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected.

The thermal efficiency depends on compression ratio, hot and cold reservoir temperatures and the heat capacity ratio.

Formula

QuantityVariable[Subscript["η", "th"], "ThermalEfficiency"] == 1 - (QuantityVariable["r", "Unitless"]*QuantityVariable[Subscript["T", "c"], "Temperature"]*(1 - ((QuantityVariable["r", "Unitless"]^(1 - QuantityVariable["γ", "HeatCapacityRatio"])*QuantityVariable[Subscript["T", "h"], "Temperature"])/QuantityVariable[Subscript["T", "c"], "Temperature"])^QuantityVariable["γ", "HeatCapacityRatio"]))/(QuantityVariable["γ", "HeatCapacityRatio"]*(QuantityVariable["r", "Unitless"]^QuantityVariable["γ", "HeatCapacityRatio"]*QuantityVariable[Subscript["T", "c"], "Temperature"] - QuantityVariable["r", "Unitless"]*QuantityVariable[Subscript["T", "h"], "Temperature"]))

symbol description physical quantity
ηth thermal efficiency "ThermalEfficiency"
r compression ratio "Unitless"
γ heat capacity ratio "HeatCapacityRatio"
Tc cold reservoir temperature "Temperature"
Th hot reservoir temperature "Temperature"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Diesel Cycle"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Diesel Cycle"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Diesel Cycle"], {QuantityVariable["r","Unitless"] -> 10, 
  QuantityVariable["\[Gamma]","HeatCapacityRatio"] -> 1.4`, 
  QuantityVariable[
\!\(\*SubscriptBox[\("T"\), \("c"\)]\),"Temperature"] -> 
   Quantity[300, "Kelvins"]}]
Out[3]=

Source Metadata

Publisher Information