Wolfram Computation Meets Knowledge

Lorentz Number

The Lorentz number is a dimensionless number that relates the thermal conductivity of a metal to its temperature and its electrical conductivity.

The Lorentz number equals voltage squared times specific electrical conductivity divided by the temperature difference and specific thermal conductivity.

Formula

QuantityVariable["γ", "RelativisticGamma"] == (QuantityVariable["V", "ElectricPotential"]^2*QuantityVariable["σ", "ElectricConductivity"])/(QuantityVariable["Δ​T", "TemperatureDifference"]*QuantityVariable["λ", "ThermalConductivity"])

symbol description physical quantity
γ Lorentz number "RelativisticGamma"
V voltage "ElectricPotential"
Δ​T temperature difference "TemperatureDifference"
λ specific thermal conductivity "ThermalConductivity"
σ specific electrical conductivity "ElectricConductivity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Lorentz Number"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Lorentz Number"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Lorentz Number"], {QuantityVariable[
   "\[CapitalDelta]\[InvisibleSpace]T","TemperatureDifference"] -> 
   Quantity[0.5`, "KelvinsDifference"], 
  QuantityVariable["V","ElectricPotential"] -> Quantity[1, "Volts"]}]
Out[3]=

Publisher Information