Doyle's Log Rule
Doyle's log rule describes the volume of wood in a standing tree or log.
The volume of wood is proportional to the diameter minus 4 inches squared times the length of the log.
Formula
![Copy to Clipboard QuantityVariable["V", "Volume"] == Quantity[1/16, "BoardFeet"/"Feet"]*(-4 + Quantity[1, "Inches"^(-1)]*QuantityVariable["d", "Diameter"])^2*QuantityVariable["L", "Length"]](https://www.wolframcloud.com/objects/resourcesystem/marketplacestorage/resources/35c/35c509dd-9332-49da-9d6c-8d48e4c6e483/Webpage/FormulaImage.png)
| symbol | description | physical quantity | 
|---|---|---|
| V | volume | "Volume" | 
| d | diameter | "Diameter" | 
| L | length | "Length" | 
Forms
Examples
Get the resource:
| In[1]:= | ![ResourceObject["Doyle's Log Rule"]](images/35c/35c509dd-9332-49da-9d6c-8d48e4c6e483-io-1-i.en.gif) | 
| Out[1]= |  | 
Get the formula:
| In[2]:= | ![FormulaData[ResourceObject["Doyle's Log Rule"]]](images/35c/35c509dd-9332-49da-9d6c-8d48e4c6e483-io-2-i.en.gif) | 
| Out[2]= |  | 
Use some values:
| In[3]:= | ![FormulaData[
 ResourceObject[
  "Doyle's Log Rule"], {QuantityVariable["L","Length"] -> 
   Quantity[10, "Feet"]}]](images/35c/35c509dd-9332-49da-9d6c-8d48e4c6e483-io-3-i.en.gif) | 
| Out[3]= |  | 
 
                 
                