Wolfram Computation Meets Knowledge

Moment of Inertia of a Cuboid

The mass moment of inertia measures the extent to which an object resists rotational acceleration about a particular axis, and is the rotational analog to mass. For a uniform solid cuboid, the moment of inertia is taken to be about the vertical axis passing through the cuboid's center of mass and perpendicular to a side.

The moment of inertia is proportional to the sum of the squares of the length and width times the mass.

Formula

QuantityVariable[Subscript["I", "z"], "MomentOfInertia"] == (QuantityVariable["m", "Mass"]*(QuantityVariable["l", "Length"]^2 + QuantityVariable["w", "Width"]^2))/12

symbol description physical quantity
Iz moment of inertia "MomentOfInertia"
m mass "Mass"
l length "Length"
w width "Width"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Moment of Inertia of a Cuboid"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Moment of Inertia of a Cuboid"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Moment of Inertia of a Cuboid"], {QuantityVariable["w","Width"] -> 
   Quantity[1, "Meters"]}]
Out[3]=

Publisher Information