Wolfram Computation Meets Knowledge

Parallel Resistor Capacitor Circuit

A resistor–inductor circuit is an electric circuit composed of resistors and capacitors driven by a voltage or current source. The parallel version places resistor and capacitor in parallel.

The resistor current equals the input voltage divided by the resistance. The capacitor current equals the product of 2\[Pi] times the electric capacitance, the frequency and the input voltage.

Formula

{QuantityVariable[Subscript["I", "r"], "ElectricCurrent"] == QuantityVariable[Subscript["V", "in"], "ElectricPotential"]/QuantityVariable["R", "ElectricResistance"], QuantityVariable[Subscript["I", "c"], "ElectricCurrent"] == 2*Pi*QuantityVariable["C", "ElectricCapacitance"]*QuantityVariable["f", "Frequency"]*QuantityVariable[Subscript["V", "in"], "ElectricPotential"]}

symbol description physical quantity
Ir resistor current "ElectricCurrent"
R electric resistance "ElectricResistance"
Vin input voltage "ElectricPotential"
Ic capacitor current "ElectricCurrent"
C electric capacitance "ElectricCapacitance"
f frequency "Frequency"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Parallel Resistor Capacitor Circuit"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Parallel Resistor Capacitor Circuit"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Parallel Resistor Capacitor Circuit"], {QuantityVariable[
\!\(\*SubscriptBox[\("I"\), \("c"\)]\),"ElectricCurrent"] -> 
   Quantity[0.0377`, "Amperes"], QuantityVariable[
\!\(\*SubscriptBox[\("I"\), \("r"\)]\),"ElectricCurrent"] -> 
   Quantity[1, "Amperes"], QuantityVariable[
\!\(\*SubscriptBox[\("V"\), \("in"\)]\),"ElectricPotential"] -> 
   Quantity[10, "Volts"]}]
Out[3]=

Publisher Information