Wolfram Computation Meets Knowledge

Fourier Number Using Thermal Conductivity

The Fourier number is a dimensionless number that characterizes transient heat conduction. Conceptually, it is the ratio of diffusive or conductive transport rate to the quantity storage rate, where the quantity may be either heat (thermal energy) or matter (particles).

The Fourier number is the characteristic time interval times the thermal conductivity divided by the product of the specific heat capacity, the characteristic length squared and the mass density.

Formula

QuantityVariable["Fo", "FourierNumber"] == (QuantityVariable["k", "ThermalConductivity"]*QuantityVariable["t", "Time"])/(QuantityVariable["c", "SpecificHeatCapacity"]*QuantityVariable["l", "Length"]^2*QuantityVariable["ρ", "MassDensity"])

symbol description physical quantity
Fo Fourier number for heat transfer "FourierNumber"
c specific heat capacity "SpecificHeatCapacity"
k thermal conductivity "ThermalConductivity"
l characteristic length "Length"
t characteristic time interval "Time"
ρ mass density "MassDensity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Fourier Number Using Thermal Conductivity"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject["Fourier Number Using Thermal Conductivity"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Fourier Number Using Thermal Conductivity"], {QuantityVariable[
   "t","Time"] -> Quantity[1, "Seconds"], 
  QuantityVariable["l","Length"] -> Quantity[1, "Meters"], 
  QuantityVariable["c","SpecificHeatCapacity"] -> 
   Quantity[0.1`, ("Joules")/("KelvinsDifference" "Kilograms")], 
  QuantityVariable["\[Rho]","MassDensity"] -> 
   Quantity[1000, ("Kilograms")/("Meters")^3], 
  QuantityVariable["Fo","FourierNumber"] -> 1}]
Out[3]=

Publisher Information