Wolfram Computation Meets Knowledge

Angular Momentum of a Rigid Body

Angular momentum is the rotational analog of linear momentum. For a rigid body, it equals the cross-product of the particle's position vector (relative to some origin) and its momentum vector.

Angular momentum equals the moment of inertia times the angular velocity.

Formula

QuantityVariable["L", "AngularMomentum"] == QuantityVariable["I", "MomentOfInertia"]*QuantityVariable["ω", "AngularVelocity"]

symbol description physical quantity
L angular momentum "AngularMomentum"
I moment of inertia "MomentOfInertia"
ω angular velocity "AngularVelocity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Angular Momentum of a Rigid Body"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Angular Momentum of a Rigid Body"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Angular Momentum of a Rigid Body"], {QuantityVariable[
   "\[Omega]","AngularVelocity"] -> 
   Quantity[1, ("Radians")/("Seconds")], 
  QuantityVariable["I","MomentOfInertia"] -> 
   Quantity[1, "Kilograms" ("Meters")^2]}]
Out[3]=

Publisher Information