Wolfram Computation Meets Knowledge

Expanded Boiling-Point Elevation Equation

Boiling-point elevation describes the phenomenon in which the boiling point of a liquid (a solvent) will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent. This formula assumes dilute ideal nonvolatile solutions.

Boiling-point elevation equals the product of the molar gas constant, solution molality, solvent molar mass and the square of the solvent boiling point divided by the solvent molar enthalpy of vaporization.

Formula

QuantityVariable[Subscript["Δ​T", "b"], "TemperatureDifference"] == (Quantity[1, "MolarGasConstant"]*QuantityVariable["m", "Molality"]*QuantityVariable["M", "MolarMass"]*QuantityVariable[Subscript["T", "b"], "Temperature"]^2)/QuantityVariable[Subscript["Δ​H", "vap"], "MolarEnergy"]

symbol description physical quantity
Δ​Tb boiling point elevation "TemperatureDifference"
m solution molality "Molality"
M solvent molar mass "MolarMass"
Tb solvent boiling point "Temperature"
Δ​Hvap solvent molar enthalpy of vaporization "MolarEnergy"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Expanded Boiling-Point Elevation Equation"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject["Expanded Boiling-Point Elevation Equation"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Expanded Boiling-Point Elevation Equation"], {QuantityVariable[
\!\(\*SubscriptBox[\("\[CapitalDelta]\[InvisibleSpace]T"\), \
\("b"\)]\),"TemperatureDifference"] -> 
   Quantity[1.`, "KelvinsDifference"], 
  QuantityVariable["M","MolarMass"] -> 
   Quantity[0.0180153`, ("Kilograms")/("Moles")]}]
Out[3]=

Publisher Information