Wolfram Computation Meets Knowledge

Circle Sector Area

The area of a sector of a circle depends on the size of that circle and the size of the arc for that sector.

The area equals the radius times the arc length divided by 2. The area also equals the radius squared times the plane angle divided by 2.

Formula

{QuantityVariable["A", "Area"] == (QuantityVariable["R", "Radius"]*QuantityVariable["s", "ArcLength"])/2, QuantityVariable["A", "Area"] == (QuantityVariable["R", "Radius"]^2*QuantityVariable["θ", "Angle"])/2}

symbol description physical quantity
A area "Area"
R radius "Radius"
s arc length "ArcLength"
θ plane angle "Angle"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Circle Sector Area"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Circle Sector Area"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Circle Sector Area"], {QuantityVariable["R","Radius"] -> 1, 
  QuantityVariable["\[Theta]","Angle"] -> \[Pi]/3}]
Out[3]=

Publisher Information