Wolfram Computation Meets Knowledge

Fabry–Pérot Interferometer Using Finesse Coefficient

This formula describes the transmission and reflection of light through a Fabry­Pérot interferometer, or etalon, a transparent plate with two reflecting surfaces or two parallel, highly reflecting mirrors.

Interferometer transmittance decreases with increasing values of the finesse coefficient, and varies inversely with the sine of the product of the plate spacing, the index of refraction, the reciprocal of the wavelength and the cosine of the angle of incidence. Interferometer reflectance is 1 minus the transmittance.

Formula

{QuantityVariable[Subscript["T", "e"], "Unitless"] == (1 + QuantityVariable["ℱ", "Unitless"]*Sin[(2*Pi*Cos[QuantityVariable["θ", "Angle"]]*QuantityVariable["l", "Distance"]*QuantityVariable["n", "Unitless"])/QuantityVariable["λ", "Wavelength"]]^2)^(-1), QuantityVariable[Subscript["R", "e"], "Unitless"] == 1 - QuantityVariable[Subscript["T", "e"], "Unitless"]}

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Fabry\[Dash]Pérot Interferometer Using Finesse \
Coefficient"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Fabry\[Dash]Pérot Interferometer Using Finesse Coefficient"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Fabry\[Dash]Pérot Interferometer Using Finesse Coefficient"], \
{QuantityVariable[
\!\(\*SubscriptBox[\("R"\), \("e"\)]\),"Unitless"] -> 0.1`, 
  QuantityVariable["n","Unitless"] -> 1.33`, 
  QuantityVariable["\[ScriptCapitalF]","Unitless"] -> 360}]
Out[3]=

Source Metadata

Publisher Information