Wolfram Computation Meets Knowledge

Freezing-Point Depression Equation Using Cryoscopic Constant

Freezing-point depression is the process in which adding a solute to a solvent decreases the freezing point of the solvent.

The freezing-point depression equals the product of the solution molarity and the cryoscopic constant.

Formula

QuantityVariable[Subscript["Δ​T", "f"], "TemperatureDifference"] == QuantityVariable["m", "Molality"]*QuantityVariable[Subscript["K", "f"], "MolalFreezingPointDepressionConstant"]

symbol description physical quantity
Δ​Tf freezing point depression "TemperatureDifference"
m solution molality "Molality"
Kf cryoscopic constant "MolalFreezingPointDepressionConstant"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Freezing-Point Depression Equation Using Cryoscopic \
Constant"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Freezing-Point Depression Equation Using Cryoscopic Constant"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Freezing-Point Depression Equation Using Cryoscopic Constant"], \
{QuantityVariable[
\!\(\*SubscriptBox[\("\[CapitalDelta]\[InvisibleSpace]T"\), \
\("f"\)]\),"TemperatureDifference"] -> 
   Quantity[3.7`, "KelvinsDifference"]}]
Out[3]=

Source Metadata

Publisher Information