Wolfram Computation Meets Knowledge

Reduced and Spectroscopic Wavenumber

The wavenumber is the spatial frequency of a wave, either in cycles per unit distance or radians per unit distance.

The reduced wavenumber equals 2\[Pi] divided by the wavelength. It also equals 2\[Pi] times the spectroscopic wavenumber.

Formula

{QuantityVariable["k", "Wavenumber"] == (2*Pi)/QuantityVariable["λ", "Wavelength"], QuantityVariable["k", "Wavenumber"] == 2*Pi*QuantityVariable[OverTilde["ν"], "SpectroscopicWavenumber"]}

symbol description physical quantity
k wavenumber "Wavenumber"
λ wavelength "Wavelength"
ν̃ spectroscopic wavenumber "SpectroscopicWavenumber"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Reduced and Spectroscopic Wavenumber"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Reduced and Spectroscopic Wavenumber"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Reduced and Spectroscopic Wavenumber"], {QuantityVariable[
\!\(\*OverscriptBox[\("\[Nu]"\), \(~\)]\),
    "SpectroscopicWavenumber"] -> Quantity[1, 1/("Centimeters")]}]
Out[3]=

Publisher Information