Wolfram Computation Meets Knowledge

Relativistic de Broglie Angular Frequency by Momentum

The de Broglie angular frequency is the angular frequency associated with a massive particle in motion according to quantum mechanics, accounting for relativistic effects.

The de Broglie angular frequency is proportional to the mass plus the square root of the sum of the squares of the mass and the momentum.

Formula

QuantityVariable["ω", "AngularFrequency"] == Quantity[1, "ReducedPlanckConstant"^(-1)]*(Quantity[-1, "SpeedOfLight"^2]*QuantityVariable["m", "Mass"] + Sqrt[Quantity[1, "SpeedOfLight"^4]*QuantityVariable["m", "Mass"]^2 + Quantity[1, "SpeedOfLight"^2]*QuantityVariable["p", "Momentum"]^2])

symbol description physical quantity
ω angular frequency "AngularFrequency"
m mass "Mass"
p momentum "Momentum"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Relativistic de Broglie Angular Frequency by \
Momentum"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject[
  "Relativistic de Broglie Angular Frequency by Momentum"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Relativistic de Broglie Angular Frequency by Momentum"], \
{QuantityVariable["\[Omega]","AngularFrequency"] -> 
   Quantity[1.`, ("Radians")/("Seconds")]}]
Out[3]=

Source Metadata

Publisher Information